Conference Papers


CIKM 2018 Papers Notes

  • Wan et al. [1] discussed how to leverage complementarity and loyalty to learn better item representations from shopping baskets. The main idea is to learn two sets of representations from co-occurred items from the same baskets where these two different representations entail item’s complementarity. Building on top the learned representations, the authors invented an algorithm called adaLoyal to determine a purchase would be a mixture of frequency-based behaviors (a.k.a, loyalty) and from item representations.
  • Zamani et al. [2] discussed how to learn one neural ranking function to replace two-phase approaches where the first phase ranking is usually a retrieval model and the second phase is a more complex model like neural nets. The main idea of the paper is to utilize L1 regularization and learn a sparse representation for both queries and documents with certain desirable conditions. These representations can be further used as indexing to retrieve documents efficiently in the inference time.
  • Ren et al. [3] discussed a long-term problem in online advertising, which is to allocate credits to user behaviors in the journey of ads conversion. Traditionally, the credit allocation is either done by some heuristics or simple models like Logistic Regression. In this work, authors utilized sequential pattern modeling, notably RNN, to model user behaviors, with considerations of different pre-conversation behavior types. In addition, the paper also introduced a way to conduct offline evaluation for credit allocation.
  • Gysel et al. [4] discussed how to utilize similar items to improve product search. The similarity is primarily determined from text similarity and semantic similarity through pushing similar items share closeness in the latent semantic space.
  • Wang et al. [5] discussed a unified framework for learning to rank problems where the traditional LambdaRank can be easily explained as an optimization procedure for an objective function, previously unknown. Under this framework, the authors proposed a generic EM algorithm to solve learning to rank problems and demonstrated several use cases of the framework with different setups, yielding different loss functions to optimize different metrics.
  • Zhang et al. [6] discussed how to combine multiple information sources on search engine result pages to infer better overall relevance. In particular, they exploited visual patterns from search result screenshots, title semantics, snippet semantics, and HTML DOM structure semantics. All these modules are combined through an Attention layer where weights are learned jointly. Another contribution of the paper is to release such dataset with graded relevance judgments. This paper won the Best paper award.
  • Jun Hu and Ping Li [7] argued that traditional collaborative ranking would not easily learn model parameters in the optimal setting. In particular, one inherent issue is that, vanilla learning would not necessarily hold ordering information and because of logistic loss, the model could learn arbitrarily model parameters that may not improve the objective function (loss). In this paper, the authors proposed a method to jointly learn column and row order as well as pointwise loss and demonstrate the effectiveness of proposed method.

References

  1. Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Representing and Recommending Shopping Baskets with Complementarity, Compatibility and Loyalty. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management(CIKM ’18). ACM, New York, NY, USA, 1133-1142. DOI: https://doi.org/10.1145/3269206.3271786
  2. Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 497-506. DOI: https://doi.org/10.1145/3269206.3271800
  3. Kan Ren, Yuchen Fang, Weinan Zhang, Shuhao Liu, Jiajun Li, Ya Zhang, Yong Yu, and Jun Wang. 2018. Learning Multi-touch Conversion Attribution with Dual-attention Mechanisms for Online Advertising. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 1433-1442. DOI: https://doi.org/10.1145/3269206.3271677
  4. Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2018. Mix ‘n Match: Integrating Text Matching and Product Substitutability within Product Search. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 1373-1382. DOI: https://doi.org/10.1145/3269206.3271668
  5. Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. 2018. The LambdaLoss Framework for Ranking Metric Optimization. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 1313-1322. DOI: https://doi.org/10.1145/3269206.3271784
  6. Junqi Zhang, Yiqun Liu, Shaoping Ma, and Qi Tian. 2018. Relevance Estimation with Multiple Information Sources on Search Engine Result Pages. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 627-636. DOI: https://doi.org/10.1145/3269206.3271673
  7. Jun Hu and Ping Li. 2018. Collaborative Multi-objective Ranking. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 1363-1372. DOI: https://doi.org/10.1145/3269206.3271785

WSDM 2011 Paper Reading

In this post, I would like to review several papers from WSDM 2011, which worth to read, in my opinion.

  • Personalizing Web Search using Long Term Browsing History” by Nicolaas Matthijs and Filip Radlinski
    This paper investigated the possibility to incorporate the whole browsing history into the personalization framework such that the ranking performance can be significantly improved. A user is represented as a “user profile”, which consists of  terms extracted from visited web pages, the queries and some meta information (e.g., clicks, time-stamps). These features are weighted with several weighting schemes discussed, such as TF-IDF, modified BM25 and raw term frequencies. In addition, several re-ranking strategies are discussed as well. The experiments are rich. The authors conducted both off-line and on-line experiments against non-trivial baselines, including non-personalized version of Google ranking results and a previous study of personalized ranking. All results show significant improvement of ranking results by using long-term browsing history. This paper is interesting and also surprising in the sense that the approach is straightforward and simple while the result is strong. I’m really impressed that no one did this before.
  • Quality-Biased Ranking of Web Documents” By Michael Bendersky, W. Bruce Croft and Yanlei Diao
    This paper introduced a way to incorporate quality factors into ranking functions. It is a little bit unexpected that quality factors are never considered in most ranking models. The proposed method is straightforward, based on Markov Random Field IR model, which is claimed one of the state-of-the-art IR models. It is surprisingly easy to embed these new features into the ranking model. The experiments demonstrated a significant improvement over baselines and also the one with PageRank. Overall, this is an paper worth to read.
  • Mining Named Entities with Temporally Correlated Bursts from Multilingual Web News Streams” by Alexander Kotov et al.
    This paper provides a novel approach to a heated discussed research topic, mining bursts events or name entities in this paper, from correlated text streams. Many previous methods are based on topic models. Here, the authors proposed a method based on Markov Modulated Poisson Process (MMPP). Their approach is a two-stage approach where the first stage is to fit the MMPP model and use the fitted model to align correlated bursts by dynamic programming. The complexity of the approach is much simpler than topic models. Although it is overall interesting, the paper lacks of certain comparison with other similar methods, yielding the results that we do not know how well this approach is in reality.
  • Everyone’s an Influencer: Quantifying Influence on Twitter” by Eytan Bakshy et al.
    This paper analyzed how users influence their followers on Twitter for a particular type of messages, the messages containing URLs. More specifically, they focused on only “bit.ly” URLs. The authors conducted three finds of experiments. First, by using several simple features, they found that the past influence provides the most informative  features as well as the number of followers. The second set of experiments was conducted on a small dataset where the authors asked Amazon Mechanical Turks to classify these messages into topical categories (including spams). Unfortunately, they found the predictive performance decreased as content-based features added. They claimed that the content features are noise to detect the influential role of individual post. The third set of experiments is “targeting strategies”, namely how a hypothetical marketer might optimize the diffusion of information by systematically targeting certain classes of users. A simple cost function is proposed and the authors demonstrated how different assumptions may lead to different costs. Overall, I feel this part a little bit shallow and premature to be included in the paper. In this paper, “influencer” is not pre-defined, but rather as a function of several features.
  • Identifying Topical Authorities in Microblogs” by Aditya Pal and Scott Counts
    This paper has the similar goal as the previous one. However, they proposed a totally different approach. On high level, they utilized a clustering algorithm (Gaussian Mixture Model) with a set of wide range of features. However, the authors only focused on the clusters which have high average values of three features (Topical Signal, Retweet Impact and Mention Impact), discarding all other clusters. In addition, they proposed a ranking mechanism using the CDF of Gaussian function for each feature and combined all features using multiplication. In the experiments, they first compared their methods with graph-based ranking methods (e.g., PageRank). They found that empirically, their method can discover users who are more interesting and more authoritative. In their later experiments, they focused on comparing the ratings (from human judges) of different methods. I feel that these comparisons less intuitive. Overall, the paper does not really demonstrate something new or totally surprising.
  • #TwitterSearch: A Comparison of Microblog Search and Web Search” by Jaime Teevan, Daniel Ramage and Meredith Ringel Morris
    This paper in general explored a question that whether information seeking behavior on Twitter is different from Web search. They first initialized their study by a user-study, conducted within Microsoft. Although it might be interesting to know how people use Twitter search, the small scale of user-study and the highly biased sample prevent us to generalize the conclusion made in the paper. In later study, they focused on a large query log from Bing Toolbar. Several interesting things: 1) They found that Twitter search more focused on celebrities and temporal events. 2) Users do issue the same queries to both Web search and Twitter search, implying some underlying information needs associated with. 3) Users do issue the same queries to Twitter search, indicating re-finding needs. They paper suggested several directions that future search tools can improve upon 1) Enhancing Temporal Queries 2) Enriching People Search 3) Leveraging Hashtags 4) Employing User History. 5) Providing Query Disambiguation.
  • Using Graded-Relevance Metrics for Evaluating Community QA Answer Selection” by Tetsuya Sakai et al.
    This paper introduced a graded-relevance metrics for QA answer retrieval task. They hired a number of human judges to evaluate the relevance of answers and adopted a number of graded-relevance metrics, like NDCG, to answer retrieval. Two major conclusions made in the paper: 1) they can detect many substantial differences between systems that would have been overlooked by Best-Answer based evaluation. 2) they can better identify hard questions compared to Best-Answer based evaluation. Although these two points are novel to CQA community, it is not totally surprising that graded-relevance is better than binary relevance, if we consider the experiences in IR.
  • Recommender Systems with Social Regularization” by Hao Ma et al.
    The idea of the paper is pretty straightforward. The social connections have the influence on the results of recommendation. Two models are proposed to the basic matrix factorization framework. The first model assumes that the user’s tasts should be simlar to the average of his or her friends. The second model assumes the regularization should be put on individual user pairs. Both models can utilize user-defined similarity functions where in the paper, the authors showed the results on consine similarity and Pearson Correlation Coefficient. The paper is easy to understand.
  • Low-order Tensor Decompositions for Social Tagging Recommendation” by Yuanzhe Cai et al.
    This paper is interesting. It provides an improvement to the popular tensor factorization method to the problem social tagging recommendation. The basic idea is that the 3rd decomposition of a tensor can be improved by zero-order, 1st order and 2nd order. Indeed, these lower orders can be seen as an average to the corresponding dimensions. For instance, zero-order is essentially the average over all elements. Thus, these order statistics are indeed adding biases into the model, which is a popular technique in matrix factorization based recommendation systems. The paper also discussed how to handle missing value problem. Overall, this paper is worth to read.
  • eBay: An E-Commerce Marketplace as a Complex Network” by Zeqian Shen and Neel Sundaresan
    This paper is a good reference to understand eBay as a complex network. There’s nothing strikingly new here but it confirms a lot of things with other types of media, such as Web and Wikipedia. Two interesting facts: 1) in terms of Bow-Tie structure, the Strongly Connected Component (SCC) part and IN part on eBay is very small. 2) in terms of popular triad structures, the most significant motif is “two sellers sell to the same buyer and they also sell products to each other”. In addition, they found that sellers have more interactions than buyers. The paper is worth to skip.
  • Let Web Spammers Expose Themselves” by Zhicong et al.
    This paper is interesting. It provides another view of identifying spammers. The basic idea is to mine web forums of SEO information since spammers may seek link exchange in those forums. They formulated the problem into an optimization framework with semi-supervised learning techniques. They demonstrated substantial improvement of performance.
  • Improving Social Bookmark Search Using Personalized Latent Variable Language Models” by Morgan Harvey, Ian Ruthven and Mark J. Carman
    This paper has at least two interesting point. First, the two models proposed in the paper is essentially like Probabilistic Tensor Factorization. Second, the superior of the second model demonstrated that it might be a better choice to “generate” response variables from latent factors, rather than the other way around. Thus, it would be nice to see the third model that the user is also the result of latent factors, a fully resemble to Tensor Factorization. The drawbacks of the paper is evaluation. It does not use any standard datasets.
  • Topical Semantics of Twitter Links” by Michael J. Welch et al.
    There are several interesting points in the paper, though it is straightforward overall and sometimes it seems lacking of rigorous experiments to support some ideas. First, the authors demonstrated that the PageRank for follow relationships is significantly different from Retweet induced graph. In fact, the authors would better to provide Kendall’s tau or something to demonstrate this. They showed that there is a drop in both rankings although the paper did not go deep in this point. I personally would think that this may due to the fact that the core of the Twitter network is extremely dense, compared to the other parts. The second part of the paper tried to demonstrate that retweet induced links carry much stronger semantic meanings, although the results are not very convincing.
  • A Framework for Quantitative Analysis of Cascades on Networks” by Rumi Ghosh and Kristina Lerman
    This paper is interesting and worth to be studied more thoroughly. First, the authors proposed a “cascade generating function”, which characterizes the cumulative effect on current node, gathering from its connections.  This simple function can be used to calculate a number of cascading properties, such as size, diameter, number of paths and average length. Then, the authors introduced a computational framework for the generating function. More specifically, they construct a cascade graph from cascades and then generate two matrices, contagion and length matrices. These two matrices encoded all information of all cascades. In addition, we can reconstruct or approximate the original cascades from the matrices. Equipped with these tools, the authors examined the cascades from Digg and showed some interesting results.
  • Linking Online News and Social Media” by Manos Tsagkias, Maarten de Rijke and Wouter Weerkamp
    First, the idea of the paper is interesting while I think the experiments are a little bit confusing. The authors tried to link social media to news articles. The original research question posed by the authors is: given a news article, find social media utterances that implicitly reference it. However, in the end, the task becomes to retrieve blog posts by using news articles as queries and tried to explore what kind of query representation is better. In the end, it seems that the query model based on article itself outperforms all others.
  • Predicting Future Reviews: Sentiment Analysis Models for Collaborative Filtering” by Noriaki Kawamae
    This paper introduced a fairly complicated extension of Topic Models to collaborative filtering and sentiment analysis. It introduced a number of new latent variables to the model to explain words, items and ratings. One interesting point is that this model also use the formalism that response variables are fully explained by latent factors. To be honest, as topic models, the evaluation is not totally convincing.

SIGIR 2010 Paper Reading

In this post, I would like to talk about several interesting papers from SIGIR 2010. Note, this only reflects my view of these scientific work and does not necessarily correct and thorough.

  • On Statistical Analysis and Optimization of Information Retrieval Effectiveness Metrics
    This paper is more theoretical rather than practical. The main contribution is that the authors argue that the optimal ranking problem should be factorized into two distinct yet interrelated stages: the relevance prediction stage and ranking decision stage. The paper shows that a number of IR metrics (e.g., Average Precision, DCG, Reciprocal Rank) can be decomposed into the two stages mentioned above. Therefore, the overall strategy is to directly optimize the decomposed metrics. The authors show the improved performance over simple language models. However, the paper does not compare to Learning to Rank techniques where the metrics are also optimized. In all, this is an interesting paper for whose really work in Ad-Hoc retrieval fields.
  • Evaluating and Predicting Answer Quality in Community QA
    This paper is straightforward. The authors wanted to predict the best answers (in their words, “answer quality”) in the Community QA sites.  They firstly used a number of subjective features obtained from Amazon Technical Turks and found it difficulty to do so. Then, they used a bunch of automatically extracted features (most are meta-information features) and show the improved performance. The work is simple and indeed related to my work in SIGIR 2009.  They still do not answer a question that whether a so-called “best answer” really a true “best” answer among all others to the corresponding questions. Moreover, classification approaches are not compared to retrieval-based methods in this paper.
  • Segmentation of Multi-Sentence Questions: Towards Effective Question Retrieval in cQA Services
    This is another paper in QA. This work is one extension to many previous work. For example, in “question detection”, the authors proposed a one-class SVM method to obtain the training dataset. In addition, the authors proposed a graph-based method to segment questions into multiple sub-questions. Overall, the authors show that their method can give a significant boost to question matching and retrieval, compared to traditional Bag-of-Word methods. Additionally, the authors show that the Sequential Patterns Mining and Syntactical Patterns Mining can also improve the performance of question detection. One thing is not clear is that which retrieval model the authors used in the paper.
  • Multi-Style Language Model for Web Scale Information Retrieval
    This paper is interesting. It introduces two interesting points. First, it shows the significant gap between query language model and document model where the paper also demonstrated that the anchor and title language model are more near the queries. The second point made by this paper is how to estimate a language model by considering an open vocabulary, namely, an infinite vocabulary. The problem for an open vocabulary language model is how to assign probability mass to unseen terms and how to adjust the mass to seen terms. This paper show one simple method with closed form expressions. This “smoothed” language model is also embedded with a multi-component language model where the model utilizes multiple fields for a document.
  • Mining the Blogosphere for Top News Stories Identification
    This paper is straightforward and interesting. The problem addressed in the paper is to rank news stories according to blogosphere in a given day. Here, the authors treated the “date” as the query. The overall framework falls into language model framework. In order to know how likely all blog posts relevant to the query date, the authors utilize a clustering method to group blog posts into topics and estimate the query language model from these clusters. News headline language model is estimated by a standard Dirichlet smoothed language model. Then, the distance between language model is calculated through KL-divergence. The authors proposed two heuristics to identify the importance of news stories. In all, the paper is well-written and well-organized. However, it is not clear why the authors do not use Multiple-Document representation for a blog, compared to a clustering algorithm. In addition, there are several important parameters are tuned manually, for example, the spread of a news story. This prevent the system used in real applications.
  • Serendipitous Recommendations via Innovators
    This paper reveals one interesting yet not heavily explored area in recommendation systems, the “surprise” of recommendations. The author argues that a recommender which achieved high accuracy may not help users a lot since most recommended items are popular items that can be discovered by users anyway. If a recommender wants to show something really interesting, it should provide provide some items that may not be found by users without any help. Therefore, the author proposed to use “time” as a measure to identify the success of recommendation.  However, the algorithm proposed in the paper is not very intuitive. Anyway, I think it’s still an interesting paper and worth to read.
  • Temporal Diversity in Recommender Systems
    This paper is simple and easy to follow. The main idea of the paper is to show that the temporal dynamics of recommender systems, especially in Netflix. One “obvious” observation of the paper is that users lose “patient” when they see same recommendations over time. Therefore, the authors claim that diversity should be taken into account by recommenders.

CIKM 2010 Paper Reading

In this post, I would like to talk about several interesting papers from CIKM 2010.  Note, this is only a personal view of the research conducted in those papers, which might be incorrect and biased.

  1. Web Search Solved? All Result Rankings the Same?
    This paper is a kind of “meta” research. It compares search results from three major search engines, from a sampled 1000 queries in late 2008. The main takeaway is the performance of  frequent queries, especially navigational queries are well served on all three engines. In addition, there is no such an engine that significantly outperform on all other two engines. In fact, all three engines can beat others in certain queries. One interesting point made in the paper is that, based on the analysis, the authors gave an order to prioritize investment on which type of queries search engines should put “more money”, brining this work more practical sense. Two major problems are a) only 1000 queries (although the authors argue this is “big”) and b) dataset in 2008.
  2. SHRINK: A Structural Clustering Algorithm for Detecting Hierarchical Communities in Networks
    The idea of this paper is simple and clear. It uses “density”-based method to group nodes and utilizes Modularity to measure the “goodness” of the grouping. The approach is essentially an extension of previously two-phase greedy approixmation of Modularity clustering, except that the inner loop has changed to a “density” method. In the experiments, the authors showed that this approach can overcome the “resolution limitation” of Modularity clustering. Overall, the paper is interesting but we really don’t know that how this can be applied to real large graphs. Right now, all experiments seem too “small”.
  3. What can Quantum Theory bring to Information Retrieval?
    Wow, Quantum Theory for IR! I came across Rijsbergen’s book on the same topic before but this paper is more concrete.  After reading the paper, I would say that most of the techniques they considered in the paper is indeed to “hide” a series of well-known IR methods under a Quantum-based framework. Although it may provide some theoretical advantages to do so, the real benefit is still questionable. In fact, shown in their experimental part, the proposed method cannot outperform a standard BM25 method. Additionally, there are places that authors use heuristics, for example, how to construct the representation of documents and queries, which are not really justified. In a word, the work is interesting but really does not show the justification of the new framework.
  4. PTM: Probabilistic Topic Mapping Model for Mining Parallel Document Collections
    The method proposed is simple and straightforward. However, there is one “implicit” assumption in the paper. Every word in target collection should be mapped firstly into a topic in source collection. This work is clearly related to translation topic models and collection topic models.
  5. Mining Topic-level Influence in Heterogeneous Networks
    The method proposed in the paper consists of two steps. The first step is a “linked” topic model, discovering topics from a linked network. The second step is somewhat “strange” in the sense that it is very like PageRank or random walk on the topic-level. If that’s the case, the novelty of the work will be re-judged. However, the authors do not provide any clue on it.  The experiments are conducted on small-size datasets. It is really interesting to see the comparison with a variety of topical PageRank algorithms.
  6. Collaborative Dual-PLSA: Mining Distinction and Commonality across Multiple Domains for Text Classification
    This work is similar to (4) yet more general. The latent variables to generate documents and words are decomposed. Therefore, the latent variable associated to documents can be easily considered as “labels” in traditional classification settings. That’s where they showed the power of their method. It is a little surprising that they only conducted experiments on 20-Newsgroup dataset. Similar to (4), one drawback for the model is  that all domains share the same number and same set of latent variables, enforcing the topics matched across domains. The authors are aware of this limitation and discussed extensions in the paper.
  7. Network Growth and the Spectral Evolution Model
    The result presented in this paper is somewhat unexpected. The authors show in several cases, the evolution of networks can be captured by an eigenvalue evolution model where most of eigenvectors remain the same. The authors also introduced an approach to automatically learn the link/prediction function for each eigenvalues. The models proposed also links to many existing methods. This paper and related techniques require more time to be read.
  8. Mining Interesting Link Formation Rules in Social Networks
    This paper goes beyond studying a single link formation pattern but mining a group of formation patterns. The authors extended the state-of-the-art sub graph pattern mining tool — gSpan to the link pattern scenario. One interesting step forward is to investigate the correctness of these patterns. Currently, through the experiments, there is no justification of the patterns found by their tool. In addition, it is not clear that how these found patterns really characterize the evolution of social networks. Nevertheless, this paper provides a method to gather these patterns.
  9. Learning a User-Thread Alignment Manifold for Thread Recommendation in Online Forum
    The method proposed in the paper is fairly complicated. First, the problem considered in the paper is a ranking problem, to rank threads to users according to their interests. The framework consists of three factors, user-user interactions; thread-thread similarities and thread-user alignment. User-user relationships are captured through a weighted graph. For thread-thread relationship, a low-rank representation (embedding) of threads is found, induced by a local thread matrix. The mapping between users and threads are formulated into another manifold learning problem, induced by a user-thread matrix. It is not clear that whether the intuition can be captured by simpler models. But the authors indeed show that the performance is good, compared to some simple methods.
  10. Latent Interest-Topic Model: Finding the Causal Relationships behind Dyadic Data
    Indeed, this is an extend work of a very similar work, published in SIGIR 2010. The model adds two layer between authors and documents. A document-class layer encodes the the distributions over topics for documents. Each document is only belong to one document-class. The choice of document-class depends on another layer, author-class, where it controls that how a document-class is chosen for a particular author. In the end, both authors and documents are naturally associated with topics. It seems that the model can be efficiently estimated through standard Gibbs sampling. However, the experimental results from ACM papers do not really correspond to authors’ expertise, in my opinion.