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1 Logistic Function & Logistic Regression

The common definition of Logistic Function is as follows:

P (x) =
1

1 + exp(−x)
(1)

where x ∈ R is the variable of the function and P (x) ∈ [0, 1]. One important property of Equation (1) is
that:

P (−x) =
1

1 + exp(x)

=
1

1 + 1
exp(−x)

=
exp(−x)

1 + exp(−x)

= 1− 1

1 + exp(−x)

= 1− P (x) (2)

The form of Equation (1) is widely used as the form of Logistic Regression (e.g., [1, 2, 3]):

P (y = 1 |β,x) =
exp(βTx)

1 + exp(βTx)

P (y = 0 |β,x) =
1

1 + exp(βTx)
(3)

where x is a feature vector and β is a coefficient vector. By using Equation (2), we also have:

P (y = 1 |β,x) = 1− P (y = 0 |β,x) (4)

This formalism of Logistic Regression is used in [1, 2] where labels y ∈ {0, 1} and the functional form of
the probability to generate different labels is different. Another formalism introduced in [3] unified the two
forms into one single equation by integrating the label and the prediction together:

P (g = ±1 |β,x) =
1

1 + exp(−gβTx)
(5)

where g ∈ {±1} is the label for data item x. It is also easily to verify that P (g = 1 |β,x) = 1 − P (g =
−1 |β,x).
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2 The Equivalence of Two Forms of Logistic Regression

At first glance, the form (3) and the form (5) looks very different. However, the equivalence between these
two forms can be easily established. Starting from the form (3), we can have:

P (y = 1 |β,x) =
exp(βTx)

1 + exp(βTx)

=
1

1
exp(βTx)

+ 1

=
1

exp(−βTx) + 1

= P (g = 1 |β,x) (6)

We can also establish the equivalence between P (y = 0 |β,x) and P (g = −1 |β,x) easily by using property
(2). Another way to establish the equivalence is from the classification rule. For the form (3), we have the
following classification rule:

exp(βTx)
1+exp(βTx)

1
1+exp(βTx)

> 1 → y = 1

exp(βTx) > 1

βTx > 0 (7)

An exactly same classification rule for the form (5) can also be obtained as:

1
1+exp(−βTx)

1
1+exp(βTx)

> 1 → g = 1

1 + exp(βTx)

1 + exp(−βTx)
> 1

exp(βTx) > 1

βTx > 0 (8)

Therefore, we can see that two forms essentially learn the same classification boundary.

3 Logistic Loss

Since we establish the equivalence of two forms of Logistic Regression, it is convenient to use the second
form as it can be explained by a general classification framework. Here, we assume y is the label of data and
x is a feature vector. The classification framework can be formalized as follows:

arg min
∑
i

L
(
yi, f(xi)

)
(9)

where f is a hypothesis function and L is loss function. For Logistic Regression, we have the following
instantiation:

f(x) = βTx

L
(
y, f(x)

)
= log

(
1 + exp(−yf(x)

)
(10)

where y ∈ {±1}.
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